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Abstract
We construct a model for the value of the pair distribution function g↑↓(0)
between antiparallel-spin electrons at contact in a two-dimensional electron
gas with e2/r interactions, as a function of the coupling-strength parameter rs .
The model involves an interpolation between the result of a low-rs expansion,
including the second-order direct and exchange contributions to the energy
in the paramagnetic state, and the result of a partial-wave phase-shift analysis
near Wigner crystallization. The interpolation formula is in excellent agreement
with many-body calculations based on the ladder approximation. We further
show through an STLS self-consistent calculation that g↑↓(0) is essentially
independent of the state of spin polarization of the electron gas.

1. Introduction

Many of the electron–electron interaction effects in simple metals and semiconductors can be
understood by reference to the interacting electron-gas model. Extensive studies of the three-
dimensional (3D) electron gas have shown that short-range exchange and correlations play,
especially at low density, a dominant role in determining the correlation energy and the electron-
pair distribution function g(r) at small separation r [1]. This function is a weighted mean of
the functions g↑↑(r) and g↑↓(r) for parallel-spin and antiparallel-spin electron pairs, where
g↑↑(0) vanishes on account of the Pauli principle and g↑↓(0) directly reflects the electron–
electron scattering events. Their treatment yields a cusp condition [2] relating the logarithmic
derivative of g↑↓(r) at the origin r = 0 to the Bohr radius aB . The importance of the electron–
electron ladder diagrams in evaluating g↑↓(0) was first stressed by Yasuhara [3] and by Hede
and Carbotte [4].

In this work we are concerned with the values taken by g↑↓(0) in a 2D electron gas
with e2/r interactions, first in the paramagnetic state with equal populations of the two spin
orientations and then in magnetic states with an arbitrary degree of spin polarization. Many-
body calculations of g↑↓(0) in the 2D paramagnetic electron gas have been carried out by
Freeman [5] through a coupled-cluster summation of ladder diagrams and by Nagano et al [6]
by solving the Bethe–Goldstone equation in the ladder approximation. Their results serve as
a benchmark for the model of g↑↓(0) that we present and evaluate below.
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In section 2 we first calculate the leading term in the perturbation expansion for g↑↓(0) as
a function of the coupling strength parameter rs = (πna2

B)
−1/2, where n is the areal density

of electrons. We then turn to the strong-coupling regime for an approximate evaluation of the
leading term in the decay ofg↑↓(0) to zero at large rs and propose a simple interpolation formula
between the two limits, that we test against the results of the many-body calculations. In
section 3 we examine the dependence of g↑↓(0) on the degree of spin polarization within the so-
called STLS self-consistent approximation [7]. Finally, section 4 gives our main conclusions.

2. Model for the pair distribution function at contact in the paramagnetic state

2.1. Weak-coupling limit

The pair distribution function g(r) essentially is the Fourier transform of the structure factor
S(q),

g(r) = 1 +
1

N

∑
q �=0

[S(q)− 1] exp(iq · r). (1)

In turn the structure factor is the ground-state expectation value of an operator Ŝ(q) defined by

Ŝ(q) = 1

N

∑
k,σ

∑
k′,σ ′

a
†
k,σ a

†
k′,σ ′ak′−q,σ ′ak+q,σ (2)

where the a and a† are the usual fermion annihilation and creation operators. From equation (2)
we see that the potential energy term in the 2D electron-gas Hamiltonian can be written as

Ĥpot = N

2

∑
q �=0

[Ŝ(q)− 1]v(q) (3)

where in 2D we take v(q) = 2πe2/(q�) as the Fourier transform of the interaction potential,
with � the surface area. Hence, the Hellmann–Feynman theorem relates the structure factor
to the ground-state energy E via a functional derivative,

S(q)− 1 = 2

N

δE

δ[v(q)]
. (4)

As shown by Kimball [8] for the 3D electron gas, equation (4) is very well suited to obtain
a weak-coupling expansion for the structure factor. Denoting by �S(q) the shift due to the
interactions relative to the Hartree–Fock (ideal-gas) value, the corresponding shift �g(r) can
then be obtained from equation (1) in 2D as

�g(r) = 4
∫ ∞

0
y dy�S(y)J0(2kF ry). (5)

Here kF = (2πn)1/2 is the Fermi wave number and J0(x) is the usual Bessel function of zeroth
order.

For our purposes we need the structure factor only to first order in the coupling strength rs ,
which from equation (4) implies calculating the second-order direct and exchange contributions
to the ground state energy. The exchange term exactly cancels one-half of the direct term and
the result is

�S(q) = 2m

h̄2N

∑
k,σ

∑
k′,σ ′

v(q)
f (k)f (k′)[1 − f (|k + q|)][1 − f (|k′ − q|)]

k2 + k′2 − (k + q)2 − (k′ − q)2
(6)

where the f are ideal Fermi factors. Insertion in equation (5) and numerical integration yields

lim
rs→0

g(0) = 1
2 lim
rs→0

g↑↓(0) = 1
2 [1 − 1.372rs]. (7)
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The corresponding numerical value for the coefficient of the linear term in 3D is 0.7315 [8],
in accord with the well known fact that the role of the interactions weakens with increasing
dimensionality.

The next term of the low-rs expansion in 2D corrects equation (7) by a quadratic
contribution, as already remarked by Kimball [8]. For reasons that will become clear in
the following, we do not calculate the coefficient of the quadratic term by the perturbative
approach but turn at this point to the strong-coupling regime.

2.2. Strong-coupling limit

Overhauser [9] has calculated g(0) in the 3D electron gas by treating the two-electron scattering
problem in a simple approximation. A pair of electrons with opposite spins form a singlet state
whose radial wave function R(r) is taken to satisfy the Schrödinger equation

− h̄
2

m

(
d2R(r)

dr2
+

2

r

dR(r)

dr

)
+ V (r)R(r) = ER(r). (8)

V (r) is an effective potential, which in Overhauser’s 3D model is approximated with the
potential of an electron at the centre of a sphere of radius rsaB and containing a uniformly
distributed positive charge of amount |e|. The effective potential thus vanishes outside the
sphere and the Schrödinger equation can be solved by settingE = h̄2k2/m. The inner solution
is obtained with sufficient accuracy by an iterative procedure and determines g(0) through its
value at the origin, while the outer solution defines the s-wave scattering length asc through its
form Rout (r) = 1 − asc/r at low energy.

In applying these ideas to the 2D electron gas one faces the difficulty that the effective
potential due to an electron and a neutralizing disc of charge having radius rsaB does not vanish
outside the disc. It is easily shown that the outer value of the electrical potential is determined
by the multipole moments of the 2D charge density distribution σ(r). Denoting by σ̃ (q) its
Fourier transform, with

σ̃ (q) = 2π
∫ ∞

0
r dr σ (r)J0(qr) (9)

the odd moments of the charge distribution vanish and its even moments are given by

M2( = 2π

[
d2(J0(x)

dx2(

]
x=0

∫ ∞

0
dr σ (r)r2(+1. (10)

This implies a slow (r−3) asymptotic decay of the outer potential, which is determined by the
quadrupole moment of the 2D charge density.

We resolve this difficulty by adopting the model proposed by Nagy [10] in a variational
calculation of the ground state energy of the 2D Wigner crystal. Nagy treats the radius of the
disc (r0, say) as a variational parameter and shows that, by setting to zero the outer potential, he
obtains a lower bound for the ground state energy in correspondence to the value r0 = π1/2rs/2.
This value is close to one-half of the first-neighbour distance in the triangular Wigner lattice.

Within this model the effective potential is

V (r) = e2

r
− 2e2r0

r2
s a

2
B

[
1 − 1

4

(
r

r0

)2

− 3

64

(
r

r0

)4]
(11)

for r � r0 and zero otherwise. We use this expression in the 2D Schroedinger equation to treat
the electron–electron scattering problem at strong coupling,

− h̄
2

mr

d

dr

[
r

dR(r)

dr

]
+ V (r)R(r) = h̄2k2

m
R(r). (12)
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The inner solution of equation (12) tends to a constant value at the origin (Rin(r → 0) = β,
say), since we are treating scattering in the s-wave channel. With the notation x = r/r0, an
approximate solution of equation (12) is obtained by Overhauser’s iterative method [9] as

Rin(r) = β
{

1 +
r0

aB

[
x −

(
r0

rsaB

)2(1

2
x2 − 1

32
x4 − 1

384
x6

)]}
(13)

with its first derivative being given by

dRin(r)

dr
= β r0

aB

[
1 −

(
r0

rsaB

)2(
x − 1

8
x3 − 1

64
x5

)]
. (14)

The value of β is obtained by matching the derivatives of the inner and outer solutions at the
disc radius, the outer solution having the form Rout (r) ∝ ln(r/asc) at low energy. This yields

g(0) = 2

πr2
s (1 − 55π/256)2

(15)

after using the Nagy value for the disc radius (r0 = π1/2rs/2). Finally, we obtain the s-wave
scattering length asc by matching the inner and outer solutions at the boundary, with the result

asc = π1/2

2
rs exp

[
−1 + (1 − 179π/1536)π1/2rs/2

(1 − 55π/256)π1/2rs/2

]
. (16)

In view of the approximations made in the treatment of the scattering problem, these results
are valid at strong coupling strength on the approach to Wigner crystallization.

2.3. Interpolation formula and cusp condition

The r−2
s dependence of g(0) predicted by equation (15) for the 2D electron gas at strong

coupling becomes consistent with the linear plus quadratic dependence on rs expected from
the perturbation expansion at weak coupling if we adopt the simple interpolation formula
g(0) = 1

2 (1 + ars + br2
s )

−1. Explicitly, from equations (7) and (15) we have

g(0) = 1/2

1 + 1.372rs + 0.0830r2
s

. (17)

Figure 1 compares the predictions of this interpolation formula with the results obtained by
Freeman [5] and by Nagano et al [6] from many-body calculations within the electron–electron
ladder approximation. Evidently, there is complete consistency between equation (17) and the
available first-principles results for the paramagnetic state.

We also remark that the approximate 2D Schrödinger equation (12) can be generalized
into an equation for the two-electron scattering problem having the form

− h̄
2

mr

d

dr

[
r

dR(r)

dr

]
+ v(r)R(r) = ÊR(r). (18)

Here, v(r) is the bare interaction potential and Ê is a complex operator accounting for all details
of the scattering event. By imposing with Kimball [2] that ÊR(r) tends to a finite constant in
the origin, we haveR(r)→ a1 +a2r where a1/a2 = aB (compare with equation (13)). Hence,
the cusp condition in 2D reads[

d ln g(r)

dr

]
r=0

= 2

aB
. (19)

The factor 2 in equation (19) is at variance with the analogous result obtained by Kimball [2]
in 3D.
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Figure 1. Electron-pair correlations g(r = 0) as a function of coupling-strength parameter rs in
the 2D electron gas in the paramagnetic state, where g(0) = g↑↓(0)/2. The results of equation (17)
(full line) are compared with the many-body calculations of Freeman [5] (squares) and of Nagano
et al [6] (crosses).

3. Dependence of short-range pair correlations on spin magnetization

The foregoing calculations have assumed that, at least in the strong-coupling regime, the
calculation of short-range electron–electron correlations in the electron gas reduces in the
limit r → 0 to the solution of a two-body problem. This property is indeed to be expected in
general, as a consequence of the divergence of the Coulomb potential in the origin [11]. One
may expect, therefore, that the value of g↑↓(0) should be largely independent of the relative
value of the two spin populations in the electron gas [12].

Figure 2 shows the extent to which this expectation is fulfilled in a 2D spin-polarized
electron gas within the self-consistent STLS approach. The figure reports the values of g↑↓(0)
at three values of rs in the weak-coupling regime, as functions of a spin-polarization parameter
ξ defined as ξ = (n↑ − n↓)/n where n↑ and n↓ are the mean areal densities of spin-up and
spin-down electrons. It can also be seen from figure 2 that for the paramagnetic state (ξ = 0)
these calculations yield values of g(0) = g↑↓(0)/2 which are in agreement with the predictions
made by equation (17).

We should briefly comment at this point on the theoretical approach leading to the results
shown in figure 2 (a full account of the theory and of other calculated properties will be given
elsewhere). We have studied the dielectric and magnetic response of a 2D electron gas in a
state of arbitrary spin polarization ξ , as expressed through three local-field factors accounting
for exchange and short-range correlations [12]. In an STLS approach [7] the local-field factors
are determined self-consistently with the set of three structure factors describing correlations
within and between the two spin components of the electron gas. The values of g↑↓(0) in
figure 2 emerge from such a self-consistent treatment of fluid structure and linear response.
Previous experience on 3D electron fluids (see for instance [1]) leads us to expect that these
results should be fairly accurate.



3596 M Polini et al

Figure 2. Electron-pair correlations g↑↓(r = 0) for antiparallel-spin electrons as functions of the
spin-polarization parameter ξ at three values of the coupling strength parameter rs .

4. Summary and conclusions

We have derived in this work a simple expression for short-range correlations in the 2D electron
gas in a paramagnetic state by combining a perturbative expansion at weak coupling with
an approximate treatment of electron–electron scattering processes at strong coupling. This
physically transparent approach provides an accurate interpretation of the existing results
from full many-body calculations. Quantitative data on short-range correlations, together with
the appropriate cusp condition, are useful in providing tests for approximate solutions and for
further modelling of the many-body problem. In this connection we have tested the predictions
of an STLS approach to the paramagnetic electron gas and shown that in this approach the
short-range correlation between spin-up and spin-down electrons are practically independent
of the state of spin polarization of the many-electron fluid.
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